Synaptic modulation of the interspike interval signatures of bursting pyloric neurons.
نویسندگان
چکیده
The pyloric network of the lobster stomatogastric nervous system is one of the best described assemblies of oscillatory neurons producing bursts of action potentials. While the temporal patterns of bursts have been investigated in detail, those of spikes have received less attention. Here we analyze the intraburst firing patterns of pyloric neurons and the synaptic interactions shaping their dynamics in millisecond time scales not performed before. We find that different pyloric neurons express characteristic, cell-specific firing patterns in their bursts. Nonlinear analysis of the interspike intervals (ISIs) reveals distinctive temporal structures ('interspike interval signatures'), which are found to depend on the synaptic connectivity of the network. We compare ISI patterns of the pyloric dilator (PD), lateral pyloric (LP), and ventricular dilator (VD) neurons in 1) normal conditions, 2) after blocking glutamatergic synaptic connections, and 3) in various functional configurations of the three neurons. Manipulation of the synaptic connectivity results in characteristic changes in the ISI signatures of the postsynaptic neurons. The intraburst firing pattern of the PD neuron is regularized by the inhibitory synaptic connection from the LP neuron as revealed in current-clamp experiments and also as reconstructed with a dynamic clamp. On the other hand, mutual inhibition between the LP and VD neurons tend to produce more irregular bursts with increased spike jitter. The results show that synaptic interactions fine-tune the output of pyloric neurons. The present data also suggest a way of processing of synaptic information: bursting neurons are capable of encoding incoming signals by altering the fine structure of their intraburst spike patterns.
منابع مشابه
Dopamine modulation of spike dynamics in bursting neurons.
The pyloric network of the lobster stomatogastric ganglion is a prime example of an oscillatory neural circuit. In our previous study on the firing patterns of pyloric neurons we observed characteristic temporal structures termed 'interspike interval (ISI) signatures' which were found to depend on the synaptic connectivity of the network. Dopamine, a well-known modulator of the pyloric network,...
متن کاملNoise, transient dynamics, and the generation of realistic interspike interval variation in square-wave burster neurons.
First return maps of interspike intervals for biological neurons that generate repetitive bursts of impulses can display stereotyped structures (neuronal signatures). Such structures have been linked to the possibility of multicoding and multifunctionality in neural networks that produce and control rhythmical motor patterns. In some cases, isolating the neurons from their synaptic network reve...
متن کاملMuscarinic modulation of a pattern-generating network: control of neuronal properties.
The aim of this article is to investigate the cellular mechanisms underlying cholinergic modulation of the pyloric network in the stomatogastric ganglion (STG) of the Cape lobster Jasus Ialandii. Bath application of the muscarinic agonists muscarine, oxotremorine, and pilocarpine on the STG activates a rhythmic pattern from a quiescent pyloric network. The mechanisms of this modulation were inv...
متن کاملA Modeling Approach on Why Simple Central Pattern Generators Are Built of Irregular Neurons
The crustacean pyloric Central Pattern Generator (CPG) is a nervous circuit that endogenously provides periodic motor patterns. Even after about 40 years of intensive studies, the rhythm genesis is still not rigorously understood in this CPG, mainly because it is made of neurons with irregular intrinsic activity. Using mathematical models we addressed the question of using a network of irregula...
متن کاملNeural dynamics in cortex-striatum co-cultures--II. Spatiotemporal characteristics of neuronal activity.
Neural dynamics in organotypic cortex-striatum co-cultures grown for three to six weeks under conditions of dopamine deficiency are described. Single neuron activities were recorded intra- and extracellularly, and spatiotemporal spreading of population activity was mapped using voltage-sensitive dyes. The temporal properties of spike firing were characterized by interspike interval histograms, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 3 شماره
صفحات -
تاریخ انتشار 2003